Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            The firstin situRaman spectroscopic measurements of Dy speciation in hydrothermal fluids to 300 °C indicate that the Dy3+aqua ion (v1,Dy–O) is stable in acidic DyCl3solutions up to 200 °C above which Dy chloride complexes (vDy–Cl) predominate.more » « lessFree, publicly-accessible full text available March 4, 2026
- 
            are earth elements (REE) are becoming increasingly important in modern society due to their numerous uses in manufacturing of components for green and high-tech energy industries. Studying the mechanisms of REE mineral formation in geologic systems is vital for understanding where and how these mineral deposits form. Previous studies of REE mineral deposits have shown that hydrothermal fluids can play a key role in the mobilization and enrichment of REE (Williams-Jones et al., 2000; Gysi et al., 2016; Vasyukova and Williams-Jones, 2018). Fluorite is ideal to study the behavior of REE because of their compatibility in its structure and it is a ubiquitous hydrothermal vein mineral found together with REE fluorocarbonates (i.e., bastnäsite and parisite). However, the controls on hydrothermal fluid-mineral REE partitioning in these deposits are not yet fully understood. In this study, we present petrographic observations of fluorite veins and fluid inclusions from the Gallinas Mountains REE-bearing fluorite veins/breccia deposit in New Mexico (McLemore, 2010; Williams-Jones et al. 2000). The Gallinas Mountains deposit notably contains hydrothermal fluorite and bastnäsite, and is associated with ~30 Ma alkaline igneous rocks intruded into Permian sedimentary rocks (McLemore, 2010). The goal of this study is to better understand the cause of REE variations in fluorite as a function of temperature and salinity of the fluids, and to determine how the REE concentrations change in barren and mineralized veins. Optical microscopy and cold-cathode cathodoluminescence (CL) is used to distinguish different fluorite generations and fluid inclusion types. Scanning electron microscopy (SEM) is used to identify REE minerals, zonation in fluorite, and acquire elemental compositions of different vein minerals.more » « less
- 
            Abstract Volcanogenic massive sulfide deposits may represent a significant future source of Te, which is a critical element important for the green energy transition. Tellurium is enriched in these settings by up to 10,000 times over its crustal abundance, indicating that fluids in sea-floor hydrothermal systems may transport and precipitate Te. The major element composition of these hydrothermal fluids is controlled by fluid-rock interaction and is well documented based on experimental, modeling, and natural studies; however, controls on Te mobility are still unknown. To better understand Te enrichment in this deposit type, numerical simulations of the mafic-hosted Vienna Woods and the felsic-hosted Fenway sea-floor vents in the Manus basin were performed to predict Te mobility in modern sea-floor hydrothermal vent fluids and Te deposition during sulfide formation. These simulations demonstrate that the mobility of Te in sea-floor hydrothermal systems is primarily controlled by fluid redox and temperature. Tellurium mobility is low in reduced hydrothermal fluids, whereas mobility of this metal is high at oxidized conditions at temperatures above 250°C. Numerical simulations of the reduced vent fluids of the mafic-hosted Vienna Woods site at the back-arc spreading center in the Manus basin yielded Te concentrations as low as 0.2 ppt. In contrast, the more oxidized model fluids of the felsic-hosted Fenway site located on Pual Ridge in the eastern Manus basin contain 50 ppt Te. The models suggest that Te enrichment in these systems reflects rock-buffer control on oxygen fugacity, rather than an enriched source of Te. In fact, the mafic volcanic rocks probably contain more Te than felsic volcanic rocks. The association of elevated Te contents in the felsic-hosted Fenway system likely reflects magmatic volatile input resulting in lower pH and higher Eh of the fluids. More generally, analysis of sulfide samples collected from modern sea-floor vent sites confirms that redox buffering by the host rocks is a first-order control on Te mobility in hydrothermal fluids. The Te content of sulfides from sea-floor hydrothermal vents hosted by basalt-dominated host rocks is generally lower than those of sulfides from vents located in felsic volcanic successions. Literature review suggests that this relationship also holds true for volcanogenic massive sulfides hosted in ancient volcanic successions. Results from reactive transport simulations further suggest that Te deposition during sulfide formation is primarily temperature controlled. Modeling shows that tellurium minerals are coprecipitated with other sulfides at high temperatures (275°–350°C), whereas Te deposition is distinctly lower at intermediate (150°–275°C) and low temperatures (100°–150°C). These predictions agree with geochemical analyses of sea-floor sulfides as Te broadly correlates positively with Cu and Au enrichment in felsic-hosted systems. The findings of this study provide an important baseline for future studies on the behavior of Te in hydrothermal systems and the processes controlling enrichment of this critical mineral in polymetallic sulfide ores.more » « less
- 
            The Lemitar Mountains carbonatite (Fig. 1A) is a 515 Ma rare earth element (REE) mineral deposit in New Mexico comprising over one hundred carbonatite dikes intruded into Proterozoic igneous rocks [1, 2]. The carbonatite displays grades of up to 1.1 % total REE and showcases variable degrees of hydrothermal autometasomatism and overprinting of the surrounding host rocks through fenitization and veining [1-3]. In this study, we employ a combination of petrography, optical cold-cathode cathodoluminescence and scanning electron microscopy to delineate the mineral paragenesis of the carbonatites and the associated crosscutting hydrothermal veins (Fig. 1). The determination of trace element concentrations in apatite was achieved using LA-ICP-MS. Fluid inclusions were studied in thick sections using optical microscopy, microthermometry and a confocal Raman spectroscopy to assess their salinity, homogenization temperature, and chemical composition.more » « less
- 
            Rhabdophane is a hydrous phosphate that commonly replaces monazite as a weathering product in critical mineral deposits during the alteration of rare earth elements (REE) bearing carbonatites and alkaline igneous complexes. It is an important host to the light (L)REE (i.e., La to Gd) but the stability and structure of binary solid solutions between the Ce and the other LREE endmembers have not yet been determined experimentally. Here we present room temperature calorimetric experiments that were used to measure the enthalpy of precipitation of rhabdophane (Ce1−xREExPO4·nH2O; REE = La, Pr, Nd, Sm, Eu, and Gd). The solids were characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and the role of water in the rhabdophane structure was further determined using thermogravimetric analysis coupled with differential scanning calorimetry. The calorimetric experiments indicate a non-ideal behavior for all of the binary solid solutions investigated with an excess enthalpy of mixing (ΔHex) described by a 2- to 3-term Guggenheim parameters equation. The solid solutions were categorized into three groups: (1) binary Ce-La and Ce-Pr which display positive ΔHex values with a slight asymmetry; (2) binary Ce-Nd and Ce-Sm which display negative ΔHex values with a nearly symmetric shape; (3) Ce-Eu and Ce-Gd which display both negative and positive ΔHex values with nearly symmetric shape. The excess Gibbs energy (ΔGex) of the solid solutions was further investigated using a thermodynamic analysis approach of aqueous-solid solution equilibria and the optimization programs GEMS and GEMSFITS. The resulting ΔGex values combined with the calorimetric ΔHex values indicate that there is likely an excess entropy contribution implying important short-range structural modifications in the solid solutions dependent on the deviation of the REE ionic radii from the size of Ce3+. These observations corroborate with the trends in the Raman v1 stretching bands of the PO4-site. The excess molar volumes determined from X-ray diffraction analysis further indicate an overall asymmetric behavior in all of the studied binary solid solutions, which becomes increasingly important from La to Gd. The pronounced short-range order–disorder occurring in groups 2 and 3 solid solutions mimics some of the behavior observed from previous studies in anhydrous monazite solid solutions. This study highlights the potential to use the chemistry and the structural modifications of rhabdophane as potential indicators of formation conditions in geologic systems and permits improving our modeling capabilities of REE partitioning in critical minerals systems.more » « less
- 
            Rare earth elements (REE) are critical elements found in monazite, xenotime, and hydrated REE phosphates which typically form in hydrothermal mineral deposits. Accurate predictions of the solubility of these REE phosphates and the speciation of REE in aqueous fluids are both key to understanding the controls on the transport, fractionation, and deposition of REE in natural systems. Previous monazite and xenotime solubility experiments indicate the presence of large discrepancies between experimentally derived solubility constants versus calculated solubilities by combining different data sources for the thermodynamic properties of minerals and aqueous species at hydrothermal conditions. In this study, these discrepancies were resolved by using the program GEMSFITS to optimize the standard partial molal Gibbs energy of formation (ΔfG°298) of REE aqueous species (REE3+ and REE hydroxyl complexes) at 298.15 K and 1 bar while keeping the thermodynamic properties fixed for the REE phosphates. A comprehensive experimental database was compiled using solubility data available between 25 and 300 °C. The latter permits conducting thermodynamic parameter optimization of ΔfG°298 for REE aqueous species. Optimal matching of the rhabdophane solubility data between 25 and 100 °C requires modifying the ΔfG°298 values of REE3+ by 1–6 kJ/mol, whereas matching of the monazite solubility data between 100 and 300 °C requires modifying the ΔfG°298 values of both REE3+ and REEOH2+ by ∼ 2–10 kJ/mol and ∼ 15–31 kJ/mol, respectively. For xenotime, adjustments of ΔfG°298 values by 1–26 kJ/mol are only necessary for the REE3+ species. The optimizations indicate that the solubility of monazite in acidic solutions is controlled by the light (L)REE3+ species at <150 °C and the LREEOH2+ species at >150 °C, whereas the solubility of xenotime is controlled by the heavy (H)REE3+ species between 25 and 300 °C. Based on the optimization results, we conclude that the revised Helgeson-Kirkham-Flowers equation of state does not reliably predict the thermodynamic properties of REE3+, REEOH2+, and likely other REE hydroxyl species at hydrothermal conditions. We therefore provide an experimental database (ThermoExp_REE) as a basic framework for future updates, extensions with other ligands, and optimizations as new experimental REE data become available. The optimized thermodynamic properties of aqueous species and minerals are available open access to accurately predict the solubility of REE phosphates in fluid-rock systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
